如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB. (1)求证:PB是⊙O的切线; (2)已知PA=3,BC=1,求⊙O的半径.
问题描述:
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=
,BC=1,求⊙O的半径.
3
答
(1)证明:连接OB,
∵OA=OB,
∴∠OAB=∠OBA,
∵PA=PB,
∴∠PAB=∠PBA,
∴∠OAB+∠PAB=∠OBA+∠PBA,
∴∠PAO=∠PBO.(2分)
又∵PA是⊙O的切线,
∴∠PAO=90°,
∴∠PBO=90°,
∴OB⊥PB.(4分)
又∵OB是⊙O半径,
∴PB是⊙O的切线,(5分)
说明:还可连接OB、OP,利用△OAP≌△OBP来证明OB⊥PB.
(2)连接OP,交AB于点D,
∵PA=PB,
∴点P在线段AB的垂直平分线上.
∵OA=OB,
∴点O在线段AB的垂直平分线上,
∴OP垂直平分线段AB,(7分)
∴∠PDA=90°.
又∵PA切⊙O于点A,
∴∠PAO=90°,
∴∠PAO=∠PDA,
又∵∠APO=∠DPA,
∴△APO∽△DPA,
∴
=AP DP
,PO PA
∴AP2=PO•DP.
又∵OD=
BC=1 2
,1 2
∴PO(PO-OD)=AP2,即PO(PO-
)=AP2,即:PO2-1 2
PO=(1 2
)2,
3
解得PO=2,(9分)
在Rt△APO中,OA=
=1,即⊙O的半径为1.(10分)
PO2−PA2
说明:求半径时,还可证明△PAO∽△ABC或在Rt△OAP中利用勾股定理.