函数f(x)=sinx(1+cosx)的极大值、极小值分别为多少

问题描述:

函数f(x)=sinx(1+cosx)的极大值、极小值分别为多少
有助于回答者给出准确的答案

y=f(x)=sinx+(1/2)sin(2x)是奇函数f'(x)=cosx+cos(2x)=2(cosx)^2+cosx-1,令f'(x)=0得cosx=1/2或-1(舍去)所以cosx=1/2,sinx=√3/2时,y=(3√3)/4为极大值由对称性cosx=1/2,sinx=-√3/2时,y=-(3√3)/4为极小值搞定!...