如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.
问题描述:
如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.
答
证明:∵△ABC为等腰直角三角形,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∴∠E+∠ECA=45°(三角形外角定理).
又∠ECF=135°,
∴∠ECA+∠BCF=∠ECF-∠ACB=45°,
∴∠E=∠BCF;
同理,∠ECA=∠F,
∴△EAC∽△CBF.