已知:如图,△ABC为等腰直角三角形,∠ACB=90°,点E、F是AB边所在直线上的两点,且∠ECF=135°.(1)求证:△ECA∽△CFB;(2)若AE=3,设AB=x,BF=y,求y与x之间的函数关系式,并写出x的取值范围.
问题描述:
已知:如图,△ABC为等腰直角三角形,∠ACB=90°,点E、F是AB边所在直线上的两点,且∠ECF=135°.
(1)求证:△ECA∽△CFB;
(2)若AE=3,设AB=x,BF=y,求y与x之间的函数关系式,并写出x的取值范围.
答
(1)证明:∵△ABC为等腰直角三角形,∠ACB=90°,∴AC=BC,∴∠CAB=∠CBA=45°,∴∠CAE=180°-45°=135°,同理∠CBF=135°,∴∠CAE=∠CBF,∵∠ECF=135°,∠ACB=90°,∴∠ECA+∠BCF=45°,∵∠ECA+∠E=∠CAB=...
答案解析:(1)根据等腰直角三角形性质求出∠CAE=∠CBF=135°,求出∠ECA+∠BCF=45°,∠E+∠ACE=45°,推出∠E=∠BCF,即可推出两三角形相似;
(2)根据等腰直角三角形性质和锐角三角函数定义求出AC和BC长,根据两时间相似得出比例式,代入即可求出答案.
考试点:相似三角形的判定与性质;等腰直角三角形.
知识点:本题考查了相似三角形的性质和判定,等腰直角三角形性质,锐角三角函数的定义等知识点,通过做此题培养了学生的分析问题和解决问题的能力.