已知数列{an}的前n项和为Sn.且满足a1=1/2,an=−2SnSn−1(n≥2) (1)证明:数列{1/Sn}为等差数列; (2)求Sn及an.
问题描述:
已知数列{an}的前n项和为Sn.且满足a1=
,an=−2SnSn−1(n≥2)1 2
(1)证明:数列{
}为等差数列;1 Sn
(2)求Sn及an.
答
解(1)当n≥2时,an=Sn-Sn-1=-2Sn•Sn-1,
∴
−1 Sn
=2(n≥2),1 Sn−1
∴{
}是以1 Sn
=1 S1
=2为首项,2为公差的等差数列.1 a1
(2)∵数列{
}为等差数列,1 Sn
∴
=2+2(n−1)=2n,1 Sn
即Sn=
.1 2n
当n≥2时,an=Sn−Sn−1=
(1 2
−1 n
)=−1 n−1
,1 2n(n−1)
∴an=
1 2 −
1 2n(n−1)
.
(n=1) (n≥2)