已知数列{an}的前n项和为Sn.且满足a1=1/2,an=−2SnSn−1(n≥2) (1)证明:数列{1/Sn}为等差数列; (2)求Sn及an.

问题描述:

已知数列{an}的前n项和为Sn.且满足a1

1
2
an=−2SnSn−1(n≥2)
(1)证明:数列{
1
Sn
}为等差数列;
(2)求Sn及an

解(1)当n≥2时,an=Sn-Sn-1=-2Sn•Sn-1

1
Sn
1
Sn−1
=2(n≥2),
{
1
Sn
}
是以
1
S1
1
a1
=2
为首项,2为公差的等差数列.
(2)∵数列{
1
Sn
}为等差数列,
1
Sn
=2+2(n−1)=2n

Sn
1
2n

当n≥2时,anSnSn−1
1
2
(
1
n
1
n−1
)=−
1
2n(n−1)

an
1
2
1
2n(n−1)
(n=1)
(n≥2)