在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n
问题描述:
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n
(1)设bn=an/n,求数列{bn}的通项公式.
(2)求数列{an}的前n项和Sn.
答
A(n+1)=(n+1)An/n+(n+1)/2^nA(n+1)/(n+1)=An/n+1/2^n依此类推An/n=A(n-1)/(n-1)+1/2^(n-1)A(n-1)/(n-1)=A(n-2)/(n-2)+1/2^(n-2)……A2/2=A1/1+1/2^1上式相加,相同项消去得An/n=A1/1+(1/2^1+1/2^2+……+1/2^(n-1))=1+...