在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

问题描述:

在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

EF=AP.理由:∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,连接PC、AP,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,∠PDA=∠PDC,在△PAD和△PCD中,AD=CD∠PDA=∠...
答案解析:连接AP、PC,根据矩形的性质和判定求出EF=CP,要求EF=AP,可证△APD≌△CPD,推出AP=PC即可.
考试点:正方形的性质;全等三角形的判定与性质.
知识点:本题主要考查在正方形中三角形全等的问题,要求学生熟练掌握并应用.