如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且DF=12AB,PH为△PAD中AD边上的高.(Ⅰ)证明:PH⊥平面ABCD;(Ⅱ)若PH=1,AD=2,FC=1,求三棱锥E-BCF的体积.

问题描述:

如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且DF=

1
2
AB,PH为△PAD中AD边上的高.

(Ⅰ)证明:PH⊥平面ABCD;
(Ⅱ)若PH=1,AD=
2
,FC=1,求三棱锥E-BCF的体积.

(Ⅰ)证明:∵AB⊥平面PAD,∴PH⊥AB,∵PH为△PAD中AD边上的高,∴PH⊥AD,又∵AB∩AD=A,∴PH⊥平面ABCD.(Ⅱ)如图,连接BH,取BH中点G,连接EG,∵E是PB的中点,∴EG∥PH,∵PH⊥平面ABCD,∴EG⊥平面ABCD,则...
答案解析:(Ⅰ)因为AB⊥平面PAD,所以PH⊥AB,因为PH为△PAD中AD边上的高,所以PH⊥AD,由此能够证明PH⊥平面ABCD.
(Ⅱ)连接BH,取BH中点G,连接EG,因为E是PB的中点,所以EG∥PH,因为PH⊥平面ABCD,所以EG⊥平面ABCD,由此能够求出三棱锥E-BCF的体积.
考试点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.
知识点:本题考查直线与平面垂直的证明,求三棱锥的体积,解题时要认真审题,注意合理地化立体几何问题为平面几何问题.