圆方程为X+Y+2MX+MY+4=0.求M的取值范围.M为实数
问题描述:
圆方程为X+Y+2MX+MY+4=0.求M的取值范围.M为实数
答
(2M)^2+M^2-4*4>0得M(4根号5)/5
答
X^2+Y^2+2MX+MY+4=0可化为:(X+M)^2+(Y+M/2)^2=5M^2/4-4
要使方程为圆,则5M^2/4-4>0,M^2>16/5
M>4√5/5或M
答
x^2+y^2+2mx+my+4=0
x^2+2mx+m^2+y^2+my+m^2/4=-4+5m^2/4
(x+m)^2+(y+m/2)^2=5m^2/4-4
5m^2/4-4≥0
m^2≥16/5
m≥4√5/5或m≤-4√5/5
取等号的时候是点圆.
答
m>4根号(5)/5 或m