如图,已知△ABC中,∠ABC=90°,AB=BC,AE是∠BAC的角平分线.CD⊥AE,与AE的延长线交于D点,与AB的延长线交于F点. 求证:CD=1/2AE.
问题描述:
如图,已知△ABC中,∠ABC=90°,AB=BC,AE是∠BAC的角平分线.CD⊥AE,与AE的延长线交于D点,与AB的延长线交于F点.
求证:CD=
AE.1 2
答
证明:∵CD⊥AE,
∴∠ADC=90°,
∴∠4+∠3=90°,
∵∠ABC=90°,
∴∠1+∠2=90°,
∵∠3=∠2,
∴∠1=∠4,
在△CBF和△ABE中,
,
∠1=∠4 AB=CB ∠ABE=∠CBF=90°
∴△CBF≌△ABE(ASA),
∴CF=AE,
∵AE是∠BAC的角平分线,CD⊥AE,
∴∠1=∠CAD,∠ADC=∠ADF=90°,
在△ACD和△AFD中,
,
∠CAD=∠1 AD=AD ∠ADC=∠ADF=90°
∴△ACD≌△AFD(ASA),
∴CD=DF=
CF,1 2
∵AE=CF,
∴CD=
AE.1 2