如图,△ABC中,AD是∠BAC的平分线,直线EF⊥AD,分别与AB、AC及BC的延长线交于点E、F、K,求证:∠K=1/2(∠ACB-∠B).

问题描述:

如图,△ABC中,AD是∠BAC的平分线,直线EF⊥AD,分别与AB、AC及BC的延长线交于点E、F、K,求证:∠K=

1
2
(∠ACB-∠B).

证明:∵AD平分∠BAC,
∴∠BAD=∠DAC=

1
2
∠BAC,
∵EF⊥AD,
∴∠DOK=90°,
∴∠K=90°-∠ADK=90°-(∠B+
∠ABC
2
),
1
2
∠BAC=90°-
1
2
(∠B+∠ACB),
∴∠K=90°-∠B-90°+
1
2
∠B+
1
2
∠ACB=
1
2
(∠ACB-∠B).