设f(x)=log1/2[a^2x+2(ab)^x-3b^2x+1](a>0,b>0),解不等式f(x)<0

问题描述:

设f(x)=log1/2[a^2x+2(ab)^x-3b^2x+1](a>0,b>0),解不等式f(x)<0
求真相,

log1/2[a^2x+2(ab)^x-3b^2x+1]<0 ==>a^2x+2(ab)^x-3b^2x+1>1 ==> a^2x+2(ab)^x-3b^2x>0化为((a/b)^x+3)((a/b)^x-1)>0 所以(a/b)^x>1=(a/b)^0a>b时 ,x>0;a