已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对∀x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.
问题描述:
已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对∀x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.
答
∵y=ax在R上单调递增,∴a>1;又不等式ax2-ax+1>0对∀x∈R恒成立,∴△<0,即a2-4a<0,∴0<a<4,∴q:0<a<4.而命题p且q为假,p或q为真,那么p、q中有且只有一个为真,一个为假.①若p真,q假,则a≥4;②若...