用换元法解分式方程2xx−1−5x−5x+3=0时,如果设xx−1=y,那么原方程可化为(  ) A.2y2+3y-5=0 B.2y2-5y+3=0 C.y2+3y-5=0 D.y2-5y+3=0

问题描述:

用换元法解分式方程

2x
x−1
5x−5
x
+3=0时,如果设
x
x−1
=y
,那么原方程可化为(  )
A. 2y2+3y-5=0
B. 2y2-5y+3=0
C. y2+3y-5=0
D. y2-5y+3=0

x
x−1
=y,则原方程化为2y2+3y-5=0.
故选A.