已知函数f(x)=ax^3+bx^2+cx,是在R上的奇函数,且,f(1)=2,f(2)=10 已确定 f(x)=x^3+x,且在R上递增.求:若关于x的不等式f(x^2-4)+f(kx+2k)>0在(0,1)上恒成立,求K范围.

问题描述:

已知函数f(x)=ax^3+bx^2+cx,是在R上的奇函数,且,f(1)=2,f(2)=10
已确定 f(x)=x^3+x,且在R上递增.
求:若关于x的不等式f(x^2-4)+f(kx+2k)>0在(0,1)上恒成立,求K范围.

0000000000000

f(1)=a+b+c=2
f(2)=8a+4b+2c=10
所以b=0
a=1 c=1
f(x)=x^3+x
因为-4而f(x)为奇函数
所以kx+2k>=4就能满足恒成立
x>=(4-2k)/k
0所以002所以4/3