斜率为2的直线经过抛物线x^2=20y的焦点,且与抛物线相交于A,B两点,则绝对值AB
问题描述:
斜率为2的直线经过抛物线x^2=20y的焦点,且与抛物线相交于A,B两点,则绝对值AB
答
x^2=20y 即x^2 =2*10*y= 2py p = 10焦点F(0,p/2),即( 0,5)过F(0,5),设直线方程为 y =2 x + 5x^2 = 20(2x+5)x^2 -40x -100 = 0x1 = 20 - 10√5,x2 = 20+10√5y1 = 45 - 20√5,y2 = 45+20√5|AB| = √[(x2 -x1)^2 + (y...