(x^m)*o(x^n)是x几次的高阶无穷小.o(x^n)是当x->0时的高阶无穷小,则lim[x^m*o(x^n)/(x^n)]=0,所以(x^m)*o(x^n)是x^n的高阶无穷小.但是lim[x^m*o(x^n)/(x^(n+m))]=0,所以(x^m)*o(x^n)是x^(n+m)的高阶无穷小,哪个对?x^n是x^k k
问题描述:
(x^m)*o(x^n)是x几次的高阶无穷小.
o(x^n)是当x->0时的高阶无穷小,则lim[x^m*o(x^n)/(x^n)]=0,所以(x^m)*o(x^n)是x^n的高阶无穷小.但是lim[x^m*o(x^n)/(x^(n+m))]=0,所以(x^m)*o(x^n)是x^(n+m)的高阶无穷小,哪个对?
x^n是x^k k
答
sAsas
答
都对!(x^m)*o(x^n)是x的m+n次高阶无穷小
还有o(x^m)*o(x^n)也是x的m+n次高阶无穷小
还有o(x^m)/x^n是x的m-n次高阶无穷小
但是o(x^m)/o(x^n)不x的m-n次高阶无穷小
这些你可以记住!这些我都是从参考书上看来的,绝对正确