方程:mx-(m+n)x+n=0 有两个相等的实数根.证明:n+2(m-2m)n+m=0 如果n是实数,确定m的取值范围.二次方打不出来,所以用代替.
问题描述:
方程:mx-(m+n)x+n=0 有两个相等的实数根.证明:n+2(m-2m)n+m=0 如果n是实数,确定m的取值范围.
二次方打不出来,所以用代替.
答
方程:mx-(m+n)x+n=0 有两个相等的实数根.证明:n+2(m-2m)n+m=0 如果n是实数,确定m的取值范围.
二次方打不出来,所以用代替.