在△ABC中,已知AB•AC=3BA•BC.(1)求证:tanB=3tanA;(2)若cosC=55,求A的值.

问题描述:

在△ABC中,已知

AB
AC
=3
BA
BC

(1)求证:tanB=3tanA;
(2)若cosC=
5
5
,求A的值.

(1)∵AB•AC=3BA•BC,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理bsinB=asinA得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵c...
答案解析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;
(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.
考试点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.
知识点:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.