求证对任意正整数N 2/1^2+3/2^2+……+(n+1)/n^2>ln(n+1)

问题描述:

求证对任意正整数N 2/1^2+3/2^2+……+(n+1)/n^2>ln(n+1)

先证明不等式:当x>0时ln(x+1)<x令f(x)=x-ln(x+1),则f'(x)=1-1/(x+1)=x/(x+1)>0,所以f(x)在(0,+∞)上单调递增,于是f(x)>f(0)=0,即当x>0时ln(x+1)<x在不等式中取x为1/n,有当1/n>0时ln(1/n+1)<1/n,即n>0时1/n...