已知sn=n^2-2n+3是数列{an}的前n项和,求通项公式an.要详解答案,我采纳!急用!

问题描述:

已知sn=n^2-2n+3是数列{an}的前n项和,求通项公式an.要详解答案,我采纳!急用!

sn=n^2-2n+3
前n-1项的和为s(n-1)=(n-1)^2-2(n-1)+3
an=sn-s(n-1)=n^2-2n+3-[(n-1)^2-2(n-1)+3]
=2n-3

sn=n^2-2n+3 s(n+1)=(n+1)^2-2(n+1)+3=n^2+2 s(n+1)-sn=a(n+1)

a1=S1=1-2+3=2Sn=n²-2n+3Sn-1=(n-1)²-2(n-1)+3an=Sn-Sn-1=n²-2n+3-(n-1)²+2(n-1)-3=2n-3n=1时,2-3=-1,与a1=2矛盾,因此n=1时,a1=2n≥2时,an=2n-3数列通项公式为an=2 n=12n-3 n≥2...