数列(n^2)*(2n-1)求和
数列(n^2)*(2n-1)求和
an=x^(2n-1)/2^nan+1=x^(2n+1)/2^(n+1)an+1/an=x^2/2讨论如下:(1)x=0 an=0 所以Sn=0(2)x=√2或者x=-√2 an+1/an=x^2/2=1x=√28197 an+1=an=……=a1=√2/2 Sn=na1=√2n/2x=-√2, an+1=an=……=a1=-√2/2 Sn=na1=-√2n/2(3)对于其余的xan+1/an=x^2/2,a1=x/2那么{an}是等比数列那么Sn=(x/2)*(1-(x^2/2)^n)/(1-x^2/2) =x*(1-x^2n/2^n)/(2-x^2)
求和看通项,分组求和
an
=n^2(2n-1)
=2n(n+1)(n+2) - 7n(n+1) +3n
=(1/2)[n(n+1)(n+2)(n+3) -(n-1)n(n+1)(n+2)]- (7/3)[n(n+1)(n+2) -(n-1)n(n+1)] + (3/2)[n(n+1) -(n-1)n]
Sn = a1+a2+...+an
=(1/2)n(n+1)(n+2)(n+3) - (7/3)n(n+1)(n+2) + (3/2)n(n+1)
= (1/6)n(n+1) [ 3(n+2)(n+3) - 14(n+2)+ 9]
= (1/6)n(n+1) ( 3n^2+15n+18 -14n-28+9]
=(1/6)n(n+1)(3n^2+n-1)
原式=Σ(2n^3-n^2)
=2Σn^3-Σn^2
=2*[n(n+1)/2]^2-n(n+1)(2n+1)/6
=(n^4+2n^3+n^2)/2-(2n^3+3n^2+n)/6
=(3n^4-4n^3-n)/6