∫ln(1+x^2)dx详细过程~

问题描述:

∫ln(1+x^2)dx
详细过程~

原式=xln(1+x^2)-∫xdln(1+x^2)
=xln(1+x^2)-∫x/(1+x^2)*2xdx
=xln(1+x^2)-2∫(1+x^2-1)/(1+x^2)dx
=xln(1+x^2)-2∫[1-1/(1+x^2)]dx
=xln(1+x^2)-2x+2arctanx+C

用分部积分法,即∫udv=uv-∫vdu∫ln(1+x^2)dx=x*ln(1+x^2)-∫x*d[ln(1+x^2)]=x*ln(1+x^2)-∫x*[2x/(1+x^2)]dx=x*ln(1+x^2)-2∫[x^2/(1+x^2)]dx=x*ln(1+x^2)-2∫[(1+x^2)-1]/(1+x^2)dx=x*ln(1+x^2)-2∫[1-(1/1+x^2)]d...