数列{an}满足an+1+an=4n-3(n∈N*)(Ⅰ)若{an}是等差数列,求其通项公式;(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1.

问题描述:

数列{an}满足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

( I)由题意得an+1+an=4n-3…①
an+2+an+1=4n+1…②.…(2分)
②-①得an+2-an=4,
∵{an}是等差数列,设公差为d,∴d=2,(4分)
∵a1+a2=1∴a1+a1+d=1,∴a1=−

1
2
.(6分)
an=2n−
5
2
.(7分)
(Ⅱ)∵a1=2,a1+a2=1,
∴a2=-1.(8分)
又∵an+2-an=4,
∴数列的奇数项与偶数项分别成等差数列,公差均为4,
∴a2n-1=4n-2,a2n=4n-5.(11分)
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n)(12分)
=(n+1)×2+
(n+1)n
2
×4+n×(−1)+
n(n−1)
2
×4

=4n2+n+2.(14分)
答案解析:( I)由题意得an+1+an=4n-3,an+2+an+1=4n+1.所以an+2-an=4,由{an}是等差数列,公差d=2,能求出an=2n−
5
2

(Ⅱ)由a1=2,a1+a2=1,知a2=-1.因为an+2-an=4,所以数列的奇数项与偶数项分别成等差数列,公差均为4,故a2n-1=4n-2,a2n=4n-5.由此能求出S2n+1
考试点:数列递推式;等差数列的通项公式;等差数列的前n项和.
知识点:本题数列的性质和应用,数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意等差数列的通项公式和前n项和公式的灵活运用.