数列{an}满足an+1+an=4n-3(n∈N*)(Ⅰ)若{an}是等差数列,求其通项公式;(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1.
问题描述:
数列{an}满足an+1+an=4n-3(n∈N*)
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1.
答
( I)由题意得an+1+an=4n-3…①
an+2+an+1=4n+1…②.…(2分)
②-①得an+2-an=4,
∵{an}是等差数列,设公差为d,∴d=2,(4分)
∵a1+a2=1∴a1+a1+d=1,∴a1=−
.(6分)1 2
∴an=2n−
.(7分)5 2
(Ⅱ)∵a1=2,a1+a2=1,
∴a2=-1.(8分)
又∵an+2-an=4,
∴数列的奇数项与偶数项分别成等差数列,公差均为4,
∴a2n-1=4n-2,a2n=4n-5.(11分)
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n)(12分)
=(n+1)×2+
×4+n×(−1)+(n+1)n 2
×4n(n−1) 2
=4n2+n+2.(14分)
答案解析:( I)由题意得an+1+an=4n-3,an+2+an+1=4n+1.所以an+2-an=4,由{an}是等差数列,公差d=2,能求出an=2n−
.5 2
(Ⅱ)由a1=2,a1+a2=1,知a2=-1.因为an+2-an=4,所以数列的奇数项与偶数项分别成等差数列,公差均为4,故a2n-1=4n-2,a2n=4n-5.由此能求出S2n+1.
考试点:数列递推式;等差数列的通项公式;等差数列的前n项和.
知识点:本题数列的性质和应用,数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意等差数列的通项公式和前n项和公式的灵活运用.