解方程组 2x²-xy+y²=2y;2x²+4xy=5y
问题描述:
解方程组 2x²-xy+y²=2y;2x²+4xy=5y
答
2x²-xy+y²=2y; 1)
2x²+4xy=5y 2)
1)-2)得:-5xy+y^2=-3y
得:y(y-5x+3)=0
故y=0或y=5x-3
当y=0时,代入2)式得:x=0
当y=5x-3时,代入2)式得:2x^2+4x(5x-3)=5(5x-3), 化为:22x^2-37x+15=0
(22x-15)(x-1)=0,
x=15/22, 1
故y=5x-3=9/22, 2
因此原方程有3组
(0,0), (15/22, 9/22), (1,2)
答
2x²-xy+y²=2y; 2x^2=2y+xy-y^2
2x²+4xy=5y 2x^2=5y-4xy
2y+xy-y^2=5y-4xy
5xy-3y-y^2=0
y*(5x-3-y)=0
(1)y=0,代入原式:x=0
(2)5x-3-y=0,y=5x-3,代入原式:
2x^2-x*(5x-3)+(5x-3)^2=2(5x-3)
2x^2=(5x-3)(2+x-5x+3)
22x^2-37x+15=0
(22x-15)(x-1)=0
x1=15/22,y1=5x1-3=9/22
x2=1,y2=5x2-3=2
所以:原方程解为三组:
(1)x1=0,y1=0
(2)x2=15/22,y2=9/22
(3)x3=1,y3=2