已知方程组2x−y=4m−1x−2y=2m+4的解满足x>y,求m的最小整数解.

问题描述:

已知方程组

2x−y=4m−1
x−2y=2m+4
的解满足x>y,求m的最小整数解.

解方程组

2x−y=4m−1
x−2y=2m+4
得:
x=2m−2
y=−3

∵x>y,
∴2m-2>-3,
解得:m>-
1
2

∴m的最小整数值为0.