如图所示,PA平分∠BAC,PB⊥AB,PC⊥AC,D是AP上的一点.(1)求证∠BDP=∠CDP(1)若点D在AP的延长线上,则(1)中的结论是否仍然成立?并说明理由.
如图所示,PA平分∠BAC,PB⊥AB,PC⊥AC,D是AP上的一点.
(1)求证∠BDP=∠CDP
(1)若点D在AP的延长线上,则(1)中的结论是否仍然成立?并说明理由.
理由:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,
∴在Rt△ABP和Rt△ACP中,
PB=PC,AP=AP,
∴Rt△ABP≌Rt△ACP(HL),
∴∠APB=∠APC.
在△PBD与△PCD中,
PB=PC,∠APB=∠APC,PD=PD,
∴△PBD≌△PCD(SAS),
∴∠BDP=∠CDP.
(1)证明:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,
∴在Rt△ABP和Rt△ACP中,
PB=PC,AP=AP,
∴Rt△ABP≌Rt△ACP(HL),
∴∠APB=∠APC.
在△PBD与△PCD中,
PB=PC,∠APB=∠APC,PD=PD,
∴△PBD≌△PCD(SAS),
∴∠BDP=∠CDP.
(2)仍然成立。
证明:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,
∴在Rt△ABP和Rt△ACP中,
PB=PC,AP=AP,
∴Rt△ABP≌Rt△ACP(HL),
∴∠APB=∠APC.
在△PBD与△PCD中,
PB=PC,∠APB=∠APC,PD=PD,
∴△PBD≌△PCD(SAS),
∴∠BDP=∠CDP.
(1)证明:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,
∴在Rt△ABP和Rt△ACP中,
PB=PC,AP=AP,
∴Rt△ABP≌Rt△ACP(HL),
∴∠APB=∠APC.
在△PBD与△PCD中,
PB=PC,∠APB=∠APC,PD=PD,
∴△PBD≌△PCD(SAS),
∴∠BDP=∠CDP.
(2)证明:仍然成立。
证明:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,
∴在Rt△ABP和Rt△ACP中,
PB=PC,AP=AP,
∴Rt△ABP≌Rt△ACP(HL),
∴∠APB=∠APC.
在△PBD与△PCD中,
PB=PC,∠APB=∠APC,PD=PD,
∴△PBD≌△PCD(SAS),
∴∠BDP=∠CDP.
∴PB
(1)证明:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,∴在Rt△ABP和Rt△ACP中,PB=PC,AP=AP,∴Rt△ABP≌Rt△ACP(HL),∴∠APB=∠APC.在△PBD与△PCD中,PB=PC,∠APB=∠APC,PD=PD,∴△PBD≌△PCD(SAS),∴∠BDP=∠CDP. 仍...