如图已知△ABC中AB=AC=10,BC=16,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在AB、AC上,设DE的长为x,矩形DEFG的面积为y,求y关于x的函数关系式,并写出这个函数的定义域.
问题描述:
如图已知△ABC中AB=AC=10,BC=16,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在AB、AC上,设DE的长为x,矩形DEFG的面积为y,求y关于x的函数关系式,并写出这个函数的定义域.
答
过点作AM⊥BC于点M,∵AB=AC=10,BC=16,∴BM=12BC=8,在Rt△ABM中,AM=AB2−BM2=6,∵四边形DEFG是矩形,∴DG∥EF,DE⊥BC,∴AN⊥DG,四边形EDMN是矩形,∴MN=DE=x,∵DG∥EF,∴△ADG∽△ABC,∴DG:BC=AN:AM,...
答案解析:首先过点作AM⊥BC于点M,由AB=AC=10,BC=16,根据等腰三角形的性质与勾股定理,即可求得AM的长,又由四边形DEFG是矩形,易证得△ADG∽△ABC,由相似三角形对应高的比等于相似比,即可得方程
=DG 16
,则可表示出DG的长,继而求得答案.6−x 6
考试点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质.
知识点:此题考查了相似三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意辅助线的作法,注意掌握数形结合思想与方程思想的应用.