已知函数f(x)=lg(1-x/1+x),函数g(x)图象与函数y=-(1/x+2)的图象成轴对称,设F(x)=f(x)+g(x) (1)求函数F(x)的解析式及定义域 (2)在函数F(x)图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直,求出坐标

问题描述:

已知函数f(x)=lg(1-x/1+x),函数g(x)图象与函数y=-(1/x+2)的图象成轴对称,设F(x)=f(x)+g(x)
(1)求函数F(x)的解析式及定义域
(2)在函数F(x)图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直,求出坐标

F(x)=lg(1-x/1+x)-(1/-x+2),
第二个只要证明F(x)=0有两个以上的根就可.结论是没有