已知等差数列AP :{an}=2n-1已知等比数列GP:{bn}=2^(n+1)求T=a1b1+a2b2+a3b3+.+anbn=_________ 已知等差数列AN的通项公式为2n-1,等比数列BN的通项公式为2的n+1次方,求a1b1加a2b2加a3b3加加加.加到anbn的值为多少?
已知等差数列AP :{an}=2n-1
已知等比数列GP:{bn}=2^(n+1)
求T=a1b1+a2b2+a3b3+.+anbn=_________
已知等差数列AN的通项公式为2n-1,等比数列BN的通项公式为2的n+1次方,求a1b1加a2b2加a3b3加加加.加到anbn的值为多少?
2T=a1b2 a2b3 a3b4.... .. anb(n 1)
然后错位相减
T= 1*2² + 3*2³ + 5*2^4 + ... +(2n-1)*2^(n+1)
2T= 1*2³ + 3*2^4 + 5*2^5 +... +(2n-3)*2^(n+1) + (2n-1)*2^(n+2)
∴T=2T-T= -1*2² - 2*2³ - 2*2^4 - 2*2^5 ... - 2*2^(n+1) + (2n-1)*2^(n+2)
= -2(2^2+2^3+2^4+ ... +2^(2n+1))+2²+(2n-1)*2^(n+2)
.
.
.
接下来自己化简吧
错位相消法:
Tn=1×2²+3×2³+ … +(2n-3)×2^n+(2n-1)×2^(n+1) ①式;
等式两边同乘2,得2Tn= 1×2³+3×2^4+…+(2n-5)×2^n+(2n-3)×2^(n+1)+(2n-1)×2^(n+2) ②式;
①-②,得-Tn=1×2²+2×2³+2×2^4+……+2×2^n+2×2^(n+1)-(2n-1)×2^(n+2)
=4+2^4+2^5+………+2^(n+2)-(2n-1)×2^(n+2)
=4+2^(n+2)-2^4-(2n-1)×2^(n+2)
则Tn=(n-1)×2^(n+3)+12
两边同时乘以公比2,再错位相减。
2T=a1b2+a2b3+a3b4+.......+anb(n+1),
错位相减得到2T-T=-a1b1+(a1-a2)b2+(a2-a3)b3+........+(an-1-an)bn+anb(n+1),
T=-a1b1-2(b2+b3+.......+bn)+anb(n+1),
中间用等比数列求和公式,就很好算了。