已知(x-3)^-1/3-1/3是上角标,
问题描述:
已知(x-3)^-1/3
-1/3是上角标,
答
因为f(x)=x^(-1/3)在(-∞,0)、(0,+∞)上是单调减函数
所以(x-3)^(-1/3)<(1+2x)^(-1/3)有如下三种情况:
(1)x-3<0,1+2x<0,x-3>1+2x
解得x<-4
(2)x-3<0,1+2x>0
解得-1/2<x<3
(3)x-3>0,1+2x>0,x-3>1+2x
无解
综上,x<-4或-1/2<x<3
答
y=a^x(a>0且a≠1)
当a>1时,y=a^x为增函数.y随x增大而增大,随x减小而减小
当0