已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是( )A. 30°B. 36°C. 45°D. 50°
问题描述:
已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是( )
A. 30°
B. 36°
C. 45°
D. 50°
答
设∠EBD=x°,∵BE=DE,∴∠EDB=∠EBD=x°,∴∠AED=∠EBD+∠EDB=2x°,∵AD=DE,∴∠A=∠AED=2x°,∴∠BDC=∠A+∠ABD=3x°,∵BD=BC,∴∠C=∠BDC=3x°,∵AB=AC,∴∠ABC=∠C=3x°,∵∠A+∠ABC+∠C=180°,∴2x+...
答案解析:根据AB=AC,BC=BD,AD=DE=EB可得到几组相等的角,再根据三角形外角的性质可得到∠C,∠A,∠EBD之间的关系,再根据三角形内角和定理即可求解.
考试点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.
知识点:此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.