设函数f(x)的定义域关于原点对称,且对于定义域内任意x1≠x2有f(x1-x2)=[1+f(x1)+f(x2)]/[f(x2)-f(x1)]求证f(x)是奇函数.
问题描述:
设函数f(x)的定义域关于原点对称,且对于定义域内任意x1≠x2有f(x1-x2)=[1+f(x1)+f(x2)]/[f(x2)-f(x1)]
求证f(x)是奇函数.
答
设函数f(x)的定义域关于原点对称,且对于定义域内任意x1≠x2有f(x1-x2)=[1+f(x1)+f(x2)]/[f(x2)-f(x1)]
求证f(x)是奇函数.