已知命题p:∃m∈R,m+1≤0,命题q:∀x∈R,x2+mx+1>0恒成立.若p∧q为假命题,p∨q为真命题,则实数m的取值范围为( )A. m≥2B. m≤-2或-1<m<2C. m≤-2或m≥2D. -2≤m≤2
问题描述:
已知命题p:∃m∈R,m+1≤0,命题q:∀x∈R,x2+mx+1>0恒成立.若p∧q为假命题,p∨q为真命题,则实数m的取值范围为( )
A. m≥2
B. m≤-2或-1<m<2
C. m≤-2或m≥2
D. -2≤m≤2
答
∵命题p:∃m∈R,m+1≤0,∴m≤-1;又命题q:∀x∈R,x2+mx+1>0恒成立,∴m2-4<0,∴-2<m<2.∵p∧q为假命题,p∨q为真命题,∴p真q假或p假q真.若p真q假,则m≤−1m≤−2或m≥2,解得m≤-2;若p假q真,则m>−...
答案解析:可求得命题p真与命题q真时对应的x的范围,再结合题意即可求得实数m的取值范围.
考试点:命题的真假判断与应用.
知识点:本题考查命题的真假判断与应用,着重考查存在量词与全称量词的应用,考查复合命题的判断,属于中档题.