一道矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0 1 }-1 1
问题描述:
一道矩阵运算
设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵A
B的伴随矩阵B*是
{ 0 1 }
-1 1
答
BA-B=2E => B(A-E)=2E =>B[1/2(A-E)]=E =>1/2(A-E)=B* => A=2B*+E
答
( B*)·B=|B|E.取行列式.|B*||B|=|B|².|B|=|B*|=1
BA-B=2E,左乘B*:A-E=2B*.A=2B*+E=
(1 2)
-2 3