如何用数学归纳法证明这个不等式?

问题描述:

如何用数学归纳法证明这个不等式?
n^3 请给出完整解答!
xuzhouliuying 大哥:
有一段我没看懂,请问这个是如何得出的?
(k+1)!-(k+1)^3
>(k+1)k^3-k^3-3k^2-3k-1

证:n=6时,6^3=2166!=7206^3(k+1)k^3-k^3-3k^2-3k-1=k^4-3k^2-3k-1=(k^4-1)-3k(k+1)=(k^2+1)(k+1)(k-1)-3k(k+1)=(k+1)[(k^2+1)(k-1)-3k]=(k+1)(k^3-k^2+k-1-3k)=(k+1)(k^3-k^2-2k-1)=(k+1)(k^3-2k^2+k^2-2k-1)=(k+1)...