已知a,b为正常数,x,y为正实数,且a/b+b/y=1,求x+y的最小值.
问题描述:
已知a,b为正常数,x,y为正实数,且a/b+b/y=1,求x+y的最小值.
答
若a/x+b/y=1(x,y,a,b属于R+),则x+y的最小值为解:x+y=(x+y)*1=(x+y)*(a/x+b/y) =a+b+(ay/x+bx/y) >=a+b+2根号(ay/x*bx/y) =a+b+2根号(ab)