用导数的定义证明:(a^x)'=a^x·lna
问题描述:
用导数的定义证明:(a^x)'=a^x·lna
答
y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算.由设的辅助函数可以知道:⊿x=loga(1+β).所以(a^⊿x-1)/...