已知F1、F2是椭圆的两个焦点,满足MF1⊥MF2的点M总在椭圆内部,则椭圆离心率的取值范围是 _ .

问题描述:

已知F1、F2是椭圆的两个焦点,满足

MF1
MF2
的点M总在椭圆内部,则椭圆离心率的取值范围是 ___ .

设椭圆的方程为x2a2+y2b2=1(a>b>0),可得F1(-c,0),F2(c,0)∵MF1•MF2=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又∵M点总在椭圆内部,∴该圆内含于椭圆,可得c<b,平方得c2<b2,即c2<a2-c2...