在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,H是EF的中点.求证:GH垂直EF.

问题描述:

在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,H是EF的中点.求证:GH垂直EF.

在三角形ABC中E,G中点,得到EG平行于BC且EG=BC/2,
同理在三角形ACD中得到GF=AD/2,
由于AD=BC,可以得到EG=GF,
且H是EF中点,在三角形EGF中可以得到GH垂直于EF.(重点是画图)画出图来一目了然