如图,在平行四边形ABCD中,E、F分别是BC、AD边的中点,G.H是对角线BD上的两点,BG=DH,求证:四边形EGFH是平行四边形
问题描述:
如图,在平行四边形ABCD中,E、F分别是BC、AD边的中点,G.H是对角线BD上的两点,BG=DH,求证:
四边形EGFH是平行四边形
答
证明:因为平行四边形ABCD,E、F分别是BC、AD边的中点所以:BE=DF,AD//BC所以:∠FDG=∠EBH因为:BG=DH所以:BH=DG在三角形DFG和三角形BEH中,BE=DF,∠FDG=∠EBH,BH=DG所以:三角形DFG全等于三角形BEH(边角边)所以:...