设a为实数,f(x)=-x3+3x+a. (1)求f(x)的极值; (2)当a为何值时,f(x)=0恰有两个实根.
问题描述:
设a为实数,f(x)=-x3+3x+a.
(1)求f(x)的极值;
(2)当a为何值时,f(x)=0恰有两个实根.
答
(1)令.f′(x)=-3x2+3=0得x=±1,
当x<-1时,f′(x)<0
当-1<x<1时,f′(x)>0
当x>1时,f′(x)<0
f极小=f(-1)=a-2,f极大=f(1)=a+2;
(2)f(x)=0恰有两个实根,
当极大值或极小值为零f(x)=0恰有两个实根,
时则a=2或a=-2.