已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足AC•BC=0,设P为弦AB的中点, (1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好

问题描述:

已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足

AC
BC
=0,设P为弦AB的中点,

(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

(1)连接CP,由

AC
BC
=0,知AC⊥BC
∴|CP|=|AP|=|BP|=
1
2
|AB|
,由垂径定理知|OP|2+|AP|2=|OA|2即|OP|2+|CP|2=9(4分)设点P(x,y),
有(x2+y2)+[(x-1)2+y2]=9化简,得到x2-x+y2=4(8分)
(2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中
p
2
=1

∴p=2,故抛物线方程为y2=4x(10分)由方程组
y2=4x
x2-x+y2=4
得x2+3x-4=0,解得x1=1,x2=-4(12分)
由于x≥0,故取x=1,此时y=±2,故满足条件的点存在的,其坐标为(1,-2)和(1,2)(14分)