如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,-x+y=1. (1)求点D的坐标
问题描述:
如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,-x+y=1.
(1)求点D的坐标;
(2)用含有a的式子表示点P的坐标;
(3)图中面积相等的三角形有几对?
答
(1)∵P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,∴A(x,0),B(0,y),即:OA=-x,BO=-y,∵AD=BO,∴-x-DO=-y,∴-x+y=DO,又∵-x+y=1,∴OD=1,即:点D的坐标为(-1,0).(2)∵EO是△AEF的中线,∴AO=OF=-x...