在直角坐标系中,直线y=2x+4交x轴于A,交y轴于D(1)以A为直角顶点作等腰直角△AMD,直接写出点M的坐标为 _ (2)以AD为边作正方形ABCD,连BD,P是线段BD上(不与B、D重合)的一点,在BD上截
问题描述:
在直角坐标系中,直线y=2x+4交x轴于A,交y轴于D
(1)以A为直角顶点作等腰直角△AMD,直接写出点M的坐标为 ___
(2)以AD为边作正方形ABCD,连BD,P是线段BD上(不与B、D重合)的一点,在BD上截取PG=
,过G作GF⊥BD,交BC于F,连AP则AP与PF有怎样的数量关系和位置关系?并证明你的结论;
10
(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD、PG、BG之间有何关系,并证明你的结论.
答
(1)M(-6,2)或(2,-2);
(2)AP=PF且AP⊥PF.理由如下:
过A作AH⊥DB,如图,
∵A(-2,0),D(0,4),
∴AD=
=2
42+22
,
5
∵四边形ABCD为正方形,
∴BD=2
•
5
=2
2
,
10
∴AH=DH=
BD=1 2
,
10
而PG=
,
10
∴DP+BG=
,
10
而DH=DP+PH=
,
10
∴PH=BG,
∵∠GBF=45°,
∴BG=GF,
∴Rt△APH≌Rt△PFG,
∴AP=PF,∠PAH=∠FPG,
∴∠APH+∠GPF=90°,即AP⊥PF.
(3)DP2+BG2=PG2.理由如下:
把△AGB绕A点逆时针旋转90°得到△AMD,连MP,如图,
∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,
∴∠MDP=90°,
∴DP2+BG2=PM2;
又∵∠PAG=45°,
∴∠DAP+∠BAG=45°,
∴∠MAD+∠DAP=45°,即∠MAP=45°,
而AM=AG,
∴△AMP≌△AGP,
∴MP=PG,
∴DP2+BG2=PG2.