过坐标原点O作两条互相垂直的射线,与椭圆C:3x2+4y2=12分别交与A,B两点,证明点O到直线AB的距离为定值.
问题描述:
过坐标原点O作两条互相垂直的射线,与椭圆C:3x2+4y2=12分别交与A,B两点,证明点O到直线AB的距离为定值.
答
设过坐标原点O作的两条互相垂直的射线的方程分别为y=kx和y=(-1/k)x并令它们与椭圆的交点分别为A(x1,y1)和B(x2,y2),则y1=kx1,y2=(-1/k)x2将它们分别代入椭圆3x^2+4y^2=12中,得:(3+4k^2)*(x1)^2=12,(4+3k^2)*(x2)^2=1...