在△ABC中,若sinA+sinB=sinC(cosA+cosB). (1)判断△ABC的形状; (2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.

问题描述:

在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)判断△ABC的形状;
(2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.

(1)根据正弦定理,原式可变形为:c(cosA+cosB)=a+b①,∵根据任意三角形射影定理得:a=b•cosC+c•cosB,b=c•cosA+a•cosC,∴a+b=c(cosA+cosB)+cosC(a+b)②,由于a+b≠0,故由①式、②式得:cosC=0,∴在...