在三角形ABC中,角A,角B,角C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4,求cotA+cotC的值
问题描述:
在三角形ABC中,角A,角B,角C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4,求cotA+cotC的值
答
a,b,c成等比数列,ac=b^2,sinA*sinC=sinB^2 (a/sinA=Bb/sinB=c/sinC=2R)
cotA+cotC= cosA /sinA +cosC /sinC
=(cosA sinC +cosC sinA )/sinA sinC
=sin(A+C )/sinB ^2
=sinB /sin B^2
=1/sinB
=根号(1-cosB^2)=根号7/4