如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F求证:BD=BF.

问题描述:

如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F
求证:BD=BF.

证明:∵Rt△ABC中,∠ACB=90°,AC=BC,∴∠1+∠2=90°,∵BF∥AC,∴∠ACB=∠CBF=90°,∵CE⊥AD,∴∠2+∠3=90°,∴∠1=∠3,在△ACD与△CBF中,∵∠1=∠3AC=BC∠ACB=∠CBF,∴△ACD≌△CBF,∴BF=CD,∵D为B...
答案解析:先根据Rt△ABC中,∠ACB=90°,∠2+∠1=90°,再根据BF∥AC可知∠ACB=∠CBF=90°,由CE⊥AD可知∠2+∠3=90°,由∠2+∠1=90°可知∠1=∠3,故可得出△ACD≌△CBF,根据全等三角形的性质即可得出结论.
考试点:全等三角形的判定与性质;等腰三角形的性质.
知识点:本题考查的是全等三角形的判定与性质,熟知全等三角形的ASA定理是解答此题的关键.