如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE.求证:(1)DA⊥AE;(2)AC=DE.

问题描述:

如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE.
求证:(1)DA⊥AE;
(2)AC=DE.

(1)证明:∵AD平分∠BAC,∴∠BAD=12∠BAC,又∵AE平分∠BAF,∴∠BAE=12∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE=12(∠BAC+∠BAF)=90°,即∠DAE=90°,故DA⊥AE;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,故...
答案解析:(1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即可证明DA⊥AE;
(2)因为AB=AC,若要证明AC=DE,可转化为证明AB=DE即可.
考试点:矩形的判定与性质;等腰三角形的性质.
知识点:本题考查的是角平分线,等腰三角形的性质及矩形的判定定理.有一定的综合性.